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STRUCTURAL ADAPTIVE ANISOTROPIC NAS-RIF FOR 
BIOMEDICAL IMAGE RESTORATION
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Suranaree University of Technology, Thailand                                                 

Blind image deconvolution is an ill-posed problem that attempts to restore an acquired image degraded by unknown 
PSF. A variational BID implementation, called NAS-RIF, is known for being robust but prone to poor convergence un-
der low SNR and unrealistic support. Motivated by simple yet effi cient fi delity metric, this paper presents an improved 
NAS-RIF by reducing adverse effect of inverse high-pass fi lter and computationally intensive pre-deterministic noise 
removal, by adaptively incorporating anisotropic structural property within local neighborhood seamlessly in NAS-RIF 
cost function. With an automatic support region estimation, the entire deconvolution process was fully automatic. The 
experimental results reported herein indicated that the enhanced structural adaptive anisotropic NAS-RIF had better 
convergence condition,while maintaining the underlying image fi delity.
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INTRODUCTION

Signal degradation has been considered one of the most 
impeding factors in computer vision and pattern recogni-
tion [1] In medical imaging, it often occurs during acqui-
sition and reconstruction processes. Its root cause stems 
from non-ideal sensors (e.g., x-ray detector and ultra-
sonic transducer, etc.) or subject motion.Certain degra-
dations such as contrast, noise, and blur were shown as-
sociated with diminished performance and appreciation 
of radiographic imagery [2]. Provided various assump-
tions on and extents of degradations, higher-level vision 
strategieshave often been incorporated to assist analy-
ses,e.g., recognition [3], fusion [4], segmentation[5],and 
modeling [6], etc.However, depending on certain types of 
analyses, imaging fi delity, i.e., luminance, contrast, and 
structural appearance remains imperative to their per-
formance, which could be undermined by ill-considered 
enhancements.Restoration of the “true” image involves 
identifying the underlying degrading model, such as nois-
es or a Point Spread Function (PSF) and then performing 
the respective inverse operations (Fig 1). Among state-
of-the-arts approaches, deconvolution is characterized 
by computing procedure that corrects an image, for the 
infl uence of instrumental PSF and possibly noises. It is 
based on a hypothesis that the recorded image is indeed 
the convolution of the actual distribution of an object with 
PSF. Deconvolution thus treats image as an estimate (f’) 
of the true signal intensity (f) and using an expression for 
the PSF (h), performs mathematical inverse (h’) of the 
imaging process (g) to obtain an improved estimate of 
image intensity, as shown in (Fig 1)[7].
Practical pattern recognition system often relied on ex-
plicit knowledge on the PSF such as low contrast, out-
of-focus, and motions and then reconstruct the original 
scene by fi ltering an acquired image with predetermined 
linear kernel, which often was the inversed fi lter of a de-
grading model. Given a model of PSF (such as Gaussian 

Figure 1: Overview of deconvolution process to 
estimate a true image, f’

blur), its representing parameters (e.g., standard devia-
tion, skew, orientation, etc.) can be accurately obtained, 
for instance, by fi rst acquiring a single object with known 
intensity and then performing a Maximum Likelihood 
(ML) parametric estimation based on actual and acquired 
signals [8]. Blind Image Deconvolution (BID) [9, 10], on 
the other hand, tackles this restoration problem without 
knowing of such kernel nor its parameters in advance. 
Although BID is a mature fi eld, it remains one of the most 
challenging issues in image analysis. BID is known for 
being an ill-posed problem, where small variation in data 
(e.g., imaging noise) can lead to very large variations in 
the solution, hence the estimated kernel and restored 
image [10]. Instead of optimizing model parameters, 
BID requires an estimation of many more unknown vari-
ables, i.e., all kernel elements, based on some metrics. 
It is hence considered an under-determined non-linear 
inverse problem and normally been tackled by iteratively 
learning from small observations. More recent reviews 
and discussions on BID methods, such as application 
areas, complexities, convergence properties, and oth-
er implementation issues can be found in [11, 12]. With 
BID [12], it is assumed that discrete image degradation 
is caused by the linear convolutional blur and additive 
noise and is expressed by:

(1)
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where f (x), g (x), h (x, s), and n (x) represent the orig-
inal image, the observed image, a space invariant blur 
(PSF), and observation noise, respectively. Sh    R2 is the 
support of the PSF. The additive noise, n occurs during 
imaging acquisition process. 
Trivial restoration could exploit the linear properties of the 
convolution and be achieved by using an inverse fi lter in 
the frequency domain. This operation however is known 
to suffer from instability due to unrealistic noise model 
in actual applications. Iterative Blinded Deconvolution 
(IBD) [13] was proposed to overcome this issue. Starting 
from a random PSF IBD iteratively estimates PSF in the 
Fourier domain, while imposing constraints on non-neg-
ativity of the pixel intensities and fi nites support. Similar-
ly, the Nonnegativity and Support Constraints Recursive 
Filtering (NAS-RIF), proposed in [14, 15, 16], iteratively 
estimates the restoring PDF that has an inverse and is 
absolutely summable. NAS-RIF derives a cost function 
based on the same constraints as the IBD method, but 
its optimization process is carried out in the spatial do-
main. In NAS-RIF, these constraints are imposed by pro-
jecting the estimated image onto a convex set via POCS 
(Projection onto Convex Set). The method has been 
widely applied in medical and astronomical imaging. Al-
though several extensions have since been attempted 
to improve the convergence and quality of the restored 
image [17-23], enhancing of NAS-RIF with state-of-art 
algorithms remains an open area of investigation.
This paper thus proposes a structural adaptive image 
restoration based on NAS-RIF algorithm. By determin-
ing local structure of an image, resultant anisotropic 
weights were incorporated into the NAS-RIF objective 
function. It would be exhibited both quantitatively and vi-
sually by the experiments herein that the resultant resto-
ration had good stability against degradation and image 
quality. More specifi cally, the emphasis was placed on 
image intensity, gradient, and appearance structure, as 
they are pertinent to medical image analysis tasks, i.e., 
segmentation, edge detection, and fusion, respectively.
The remaining of the paper is organized as follow. The 
next section discusses existing works on IBD, with em-
phasis on iterative NAS-RIF, and other related materials 
employed in this study. Next, the proposed method is 
explained in greater details. Subsequently,both numeri-
cal and visual experimental results are illustrated. Final-
ly, the discussions and concluding remarks of this paper-
are provided. 

MATERIALS AND METHODS

IBD
Following the notations in equation (1), IBD is a process 
of estimating the true image, f, and the degrading blur, h, 
from a degraded image, g, provided a priori on the imag-
ing system [10, 24]. Linear image restorations iteratively 
determine a set of model parameters from a known blur-
ring function via inversion, subject to particular degra-
dation and image model. IBD simultaneously estimates 

∩

both pixels of the true image and the PSF (or its inverse), 
by using numerical techniques with non-negativity and 
support constraints incorporated into its objective (cost) 
function.The most well-known variant of IBD was pro-
posed by Ayers and Dainty [13], where both true image 
and PSF were recovered in alternate in the frequency 
domain, using Fast Fourier Transform (FFT). The con-
straints were imposed by replacing violations with pre-
defi ned pixel values, with respect to region of support. At 
kth iteration, PSF (H) and true image (F) were expressed 
as follow:

(2)

(3)

where (•)* denotes complex conjugate of (•), tilde and hat 
accents denote the estimate and that with constraints im-
posed, respectively. Care must be taken when selecting 
weighting α as it would affect the reliability of restoration. 
Although this technique is robust against noise, thanks 
to the Weiner-like fi lter property, but its uniqueness and 
convergence are greatly affected by the initial estimate 
of true image.
There have been other extensions of IBD in literature. 
For instance, Chany, Yipy, and Parky [25] ran joint op-
timization of deconvolution and inpainting in spatial do-
main to restore a degraded image with missing region. 
With this technique, ringing artefacts around the occlu-
sion boundary were reduced. Zhulina [26] focused on as-
tronomical image and extended [13] by used multichan-
nel scheme based on maximum-likelihood of distortion 
hypotheses. Apart from PSF being positive, they made 
neither restriction on the true image nor any other PSF 
property. Since no input parameters were needed, the 
iteration was terminated by a predefi ned quality mea-
sure. Following multi-frame approach, short exposure 
atmosphere turbulence images were restored [27]. A 
low-pass fi lter was incorporated into the asymmetric 
multiplicative iteration to restore blurred image while 
removing additive noise. A more recent attempt [28] 
combined Mumford & Shah piecewise-smooth image 
model and the sparse PSF prior regularizations. This 
iterative progressive restoring scheme had better rate of 
convergence and restoration quality.

NAS-RIF

NAS-RIF method was introduced in [14] to overcome the 
instability problem associated with IBD. NAS-RIF makes 
the same assumption on the true image as IBD, but im-
poses only absolutely summable, i.e., (∑ || h || <∞), and 
being invertible, i.e., h–1 exists, assumptions on the PSF 
(Finite Impulse Response: FIR). A generic NAS-RIF is 
summarized in Fig 2.
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Figure 2: Diagram summarizing generic NAS-RIF 
algorithm

Given a degraded image g, NAS-RIF iteratively adjusts a 
variable FIR fi lter h, the output of this fi lter, f’, represents 
an intermediate estimation of the true image. To ensure 
non-negativity and supports constraints, f’ is fed into a 
non-linear (NL) fi lter, by which it is projected by using 
a non-expansive mapping into a space representing 
said constraints, f’NL. The difference (error) between the 
estimate and its NL projection was then used to drive 
FIR optimization, until convergence. The NAS-RIF cost 
function is expressed in equation (4).

(4)

where non-negativity, (outside) support, and regular-
ization terms are defi ned in equations (5), (6), and (7) 
respectively.

(7)

(6)

(5)

where Dsup and Dsup are sets of pixels inside and out-
side the support region and LB is the background inten-
sity.
Over decades, generic NAS-RIF has undergone several 
improvements and extension [17-23]. A few years after it 
was introduced, NAS-RIF was enhanced by multiplying 
a DC gain of the FIR [17] to background value in the 
regularization, to ensure proper scaling during optimi-
zation. In addition, to aid convergence of the non-qua-
dratic nature of the objective function, the conjugate gra-
dient was reset and replaced with a steepest gradient 
descent every fi xed number of iterations. Finally, a simple 
threshold-based segmentation was used to better defi ne 
support region, as opposed to a simple rectangle. 

____

Kundur et al extended NAS-RIF and proposed a 
fusion-based approaches, to simultaneously perform 
deblurring by using NAS-RIF and classifi cation by using 
Markov Random Field (MRF) [18]. To improve its robust-
ness, a study [19] proposed modifying original cost func-
tion and incorporated an inter-band prediction. By using 
Haar wavelet decomposition, only a lower sub-band 
(LL0) was restored with NAS-RIF, while the true image 
was then recovered from inter-band prediction. Accord-
ingly, source of instability residing at high frequencies 
was neglected from the optimization. Another enhance-
ment was also proposed [20], where Curvlet denoising 
was used to weaken the image noise. In that study, reli-
able object support and reconstruction were developed, 
and a logarithm function was added to speed-up the 
convergence and improve stability. On noise removal pri-
or to NAS-RIF process, Siddhichai and Chambers [21] 
proposed a Discrete Wavelet Transform (DWT) applying 
to the degraded image. The squared difference between 
the denoised and the true images was incorporated into 
NAS-RIF objective function. Similar suite was pursued in 
[22], where lifting wavelet was used as denoising. Finally, 
a set of space adaptive weights were augmented into the 
original NAS-RIF cost function [23]. The fi rst weight, w1, 
emphasizes data fi delity near the sharp edge and is mul-
tiplied with the non-negativity constrain, whilst the sec-
ond weight, w2, emphasizes smoothness in presence of 
noise and is multiplied with the support region constrain. 
These weights were calculated based on noise and im-
age intensity variances.

Structural Adaptive Anisotropic Filtering

It is evident from the existing NAS-RIF literature that 
noise reduction and underlying pixel distributions play 
an essential part in NAS-RIF stability and restoration 
results. This section therefore is dedicated to an effective 
method that has widely been applied not only in char-
acterizing local image structure but also in constructing 
a non-linear fi lter that could preserve image feature. 
Structural Adaptive Anisotropic (SAA) fi lter was fi rst pro-
posed by Yang et al [29]. With this method, the extent 
and shape of an FIR is adapted according to underlying 
intensity structure. Specifi cally, a kernel h (p) centered at 
p0 is expressed in equation (8).

(8)

where ρ (x) is a positive and rotationally symmetric cutoff 
function that satisfi es the condition ρ (x) = 1 when || x || is 
less than a maximum support radius, r, of the kernel. The 
vectors nP and nT are orthogonal unit vectors and nP is in 
parallel with the principal axis of oriented edge pattern. It 
was computed from the second moment of a mass dis-
tribution || F (P) ||2dP in the Fourier domain. The extents 
of the kernel are given by σP and σT at location p0, which 
are computed from corner strength, c, and anisotropic 
measure, g, as follow.
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where α is a normalized factor that controls how faithfully 
the corners and junctions should be preserved. Aniso-
tropic and corner measures are computed from the fi rst 
derivatives of the kernel center, that is,

(10)

where Ω is the set of spatial coordinates contained by the 
kernel. A much accurate corner detector could be used 
[30] but it would be not so effective under noisy condi-
tion. It is worth noting here, that the anisotropic metric 
(g) preserves imaging structures via gradients and their 
moments, while disregarding noise by local aggregation. 
The resultant orientation pattern thus robustly represents 
local structure of image appearance, which in turn plays 
a major role in preserving image characteristics, perti-
nent to typical analyses, e.g., segmentation, edge detec-
tion, and fusion [3-6].

Otsu Segmentation

Another crucial component in NAS-RIF is initiation of the 
support region. It was proposed that accurate segmen-
tation of medical object prior to optimization accelerates 
convergence and enhances NAS-RIF stability. Otsu 
method [31] is robust and versatile [32] for object from 
background extraction. It is based on recursively fi nding 
threshold, t, by minimizing the weighted within-class vari-
ance σw, i.e.,

(11)

where σ1 and σ2 are background and object class stan-
dard deviations, and q1 and q2 are the respective class 
probabilities, computed from respective pixel distribu-
tions, separated by t.

Proposed Method

Inspired by the preceding NAS-RIF developments [17, 
19, 23]. This study proposed an enhancement to the 
original NAS-RIF, as shown in Fig. 3. It consists of ac-
curate support extraction and locally weighting, obtained 
from structural pattern.
Conventionally, it is assumed that object is contained 
in a rectangular region of interest (ROI) [16]. Ong 
[17] has shown that for medical images, background 
within this ROI would be wrongly classifi ed as ob-
ject pixels, degrading the quality of restoration. This 
study therefore proposed a more accurate ROI or 

support identifi cation based on Otsu algorithm. Assumed 
that in medical acquisition, an anatomical object is located 
in the center of fi eld of view (FOV), surrounded by back-
ground with a constant intensity. In this study, automatic 
histogram-based segmentation thus suffi ced. The ex-
tracted ROI(s) was defi ned as binary mask (1 and 0), 
corresponding to pixels within and outside support re-
gion respectively. 
Several NAS-RIF studies also demonstrated that image 
noise causes substantial instability, thus undermining the 
effectiveness of the deconvolution. Attempts have been 
made by empirically choosing low frequency sub-band 
signal, where noise effect was remedied or denoising in-
put images, prior to the main process. However, it was 
later demonstrated that contributions to energy minimiza-
tion from involving pixels can be adjusted by a weighting 
factor, calculated from underlying image pattern [23]. In 
this study, noise amplifi cation was hence regularized by 
the structural anisotropic measure as given in Equation 
(10). Further speed up was achieved by pre-calculating 
the anisotropic map prior to entering the main loop. The 
weight characterizing the data fi delity, neglecting noise 
distribution due to spectral second moment, was incor-
porated into non-negativity cost. Moreover, unlike [23] 
another separate balancing factor, emphasizing smooth-
ness was not needed. Specifi cally, the cost functions (5) 
and (6) were therefore modifi ed as follow: 

Figure 3: Diagram summarizing the proposed structural 
adaptive anisotropic NAS-RIF algorithm

(12)

(14)

(13)
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where the inversed anisotropic measure was denoted as 
w (x, y) = 1 – g (x, y) in Equation (12) to avoid an ambi-
guity with degraded input image, g. Regularize parame-
ters, α and γ, were also added to allow for non-unity DC 
(Direct Current) gain compensation, when the image has 
non-zero background, and to prevent trivial zero of an 
estimated PSF, during optimization, respectively. With-
out loss of generalization ability, the values were set to 
1.0 as suggested by [17]. A Laplacian of image was also 
incorporated into regularization term to further reduce 
noise amplifi cation [23]. The remaining components of 
NAS-RIF, including the calculation of cost function de-
rivative and optimization procedure followed the original 
proposal [14].

EXPERIMENTAL RESULTS

This section provides visual and numerical assessments 
of the proposed extension of NAS-RIF restoration. 
Specifi cally, they are degraded images by predefi ned 
Gaussian PSF and noise, support region (dsup) extraction, 
recursive restoration process, image quality assess-
ment (both visually and numerically), and convergence 
analysis.
The experiment was carried out on medical images from 
public repositories. The proposed NAS-RIF algorithm 
was implemented in C# language by using Visual Stu-
dio® by Microsoft™Cooperation. Other trivial image pro-
cessing algorithms, such as linear operations, convolu-
tion, and display was based on Emgu CV library [33] ver. 
3.4. Three-dimensional graphical representation was 
programmed using OpenGL® by Krosnos™Group. For 
more detailed account on the NAS-RIF algorithm, read-
ers are referred to the pseudo-code listed in the Appen-
dix or the original proposals [14, 15, 16].

Degraded Images

In the following experiments each image was convoluted 
with a Gaussian PSF with known standard deviations, 
which were 5 and 7 pixels, expressed with kernel sizes 
of 11 and 15 pixels, respectively. 

(15)

Figure 4: Original sample images (left) and that 
degraded with 5 (middle) and 7 (right) pixels 

standard deviation Gaussian kernels

Selected images and degraded version are shown in Fig. 4.

Support Region Extraction

Support region (dsup) plays a crucial part in NAS-RIF. It 
was shown in previous studies that accurate support 
region could improve its stability and performance. This 
paper thus adopted an automatic Otsu segmentation to 
obtain the initial ROI masking for Eq. (12) and (13). The 
extraction results on two sample images are illustrated 
in Fig. 5. 
It is evident from the fi gure that for medical images, Otsu 
algorithm could effi ciently and robustly extract the sup-
port ROI for this purpose. It should be noted however, 

that exact delineation of anatomical boundary was not 
required in NAS-RIF, hence minor over- or under-seg-
mented pixels would be overwhelmed by correctly seg-
mented majority.

Structural Adaptive Anisotropic Measure

The key ingredient of the proposed method is the recog-
nition of anisotropic pattern, characterizing local image 
orientation. Fig. 6 shows three examples of different ori-
entation patterns. They are right and left orientations and 
isotropic region with no apparent structure.
Fig. 7 illustrates two examples of anisotropic measures 
(g) of high (top) and low (bottom) noise images. Note 
that the brighter values correspond to highly structured 
patterns and therefore higher fi delity, and vice versa.
It is evident that regardless of PSF extents, the anisotro-
pic function offered consistent characterization of data 
fi delity. It is also robust against noise (top row). Specifi -
cally, recovered pattern refl ects its appearance. Although 
some background noise was also noticeable in the top 

Figure 5: Original sample images (insets), NAS-RIF 
supporting regions (dsup) (binary) and their intensity 
distributions (graph) with respective Otsu’s threshold 

values (red-line)
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Figure 6: An example of an image (left) with three 
selected regions (1) – (3) and their corresponding 

pattern parameters (right), i.e., isotropic measure (g), 
corner strength (c) and orientation angle (theta)

Figure 7: Original high (top) and low (bottom) noise
 images (left) and anisotropic measures of the 

corresponding images degraded with 5 (middle) and 
7 (right) pixels s.d. Gaussian kernels

Table 1: NAS-RIF Parameter Settings

image, it would have been removed by ROI extraction 
by Otsu and caused slight effect (outside support) on the 
NAS-RIF procedure.

Recursive Image Restoration

On elucidating the merits of the proposed enhancement, 
assessments were carried out on both high and low 
noise data. Due to different acquisition protocol, varying 
degree of noise was exhibit in medical images. In the 
experiment, estimation of PSF and true images on both 
high and low noise cases were demonstrated. Identical 
NAS-RIF parameter settings as per Eq. (12)–(14) were 
maintained in both scenarios. Table 1 lists relevant pa-
rameters specifi ed in this study. Note that conjugate re-
set refers to the number of conjugate gradient iterations 
before each re-calculation of the direction by means of 
robust steepest gradient descent, to improve conver-
gent stability. Convergence criteria that terminated the 
optimization were either updates falling below 1.0×10-4 
(Min. Step) of kernel magnitude or reaching 1200 (Max.) 
iterations.

Visual Quality Assessment

A low noise image was undergone both small (5 pixel) 
and large (7 pixels) σ-Gaussian PSFs (Eq. 15), as shown 
in Fig 4 (top row). Fig. 8 (top) and (bottom) illustrates 
restored images and comparison in selected zoomed-in 
regions (labelled as 1 and 2). Degraded with small PSF, 
it is evident that oriented edge structure and gray and 
white matter boundaries were mostly recovered. Bottom 
left inset represents restoring PSF in 3 - and 2 dimen-
sions.
Similarly, Figure 9 illustrates a zoomed-in region (labeled 
as 2) of a degraded image with a large PSF (middle) and 
restored image (right), by using the estimated PSF (left 
inset). 
The same experiment was carried out on a low noise im-
age, as shown in Fig 4 (bottom row). The estimated PSF 
in both small (top left) and large (bottom left) standard 
deviation in 3- and 2 dimensions are illustrated in the in-
sets. The middle and right images, show degraded, with 
5 (top) and 7 (bottom) pixels σ, and the corresponding 

Kernel 
Parameters

Values System 
Parameters

Values

Small PSF 
size

11×11 Max. 
Iterations

1200

Small PSF 
s.d.

5×5 Regularize 
(γ, α)

1.0, 1.0

Large PSF 
size

15×15 Max step 
(Δhi,j)

1.0/|| h' ||

Large PSF 
s.d.

7×7 Min step 
(Δhi,j)

1.0E-4/|| h' ||

PSF kernel 
size (h’)

7×7 Conjugate 
reset

1 at every 20

Figure 8: Restored noisy image (top left) and 
comparison in selected zoomed-in regions (middle 

and right) between degraded with small PSF (top) and 
restored (bottom) images. Bottom left inset represents 

restoring PSF
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restored images, respectively. It can be seen from the 
Fig. 10 that, for the selected frontal region, boundaries of 
connective tissue were clearly restored.

Quantitative Fidelity Evaluations

Evaluation of image fi delity depends on properties of 
interest. Since medical imaging typically involves basic 
analyses, namely region segmentation, boundary detec-
tion, and fusion, relevant properties were thus evaluated. 
Firstly, defi nition of object boundary is characterized by 
sharpness and clarity of the image. The fi rst metrics was 
edge strength (EDGE). It was defi ned by an averaged 
gradient magnitude, ||   f*||, over the support region (dsup). 
For a more general perception system, SSIM (Struc-
tural SIMilarity) [34] was employed, for its strong rela-
tion between computerized imaging and human visual 
neurobiology. It was expressed by a (uniform) weighted 
combination between luminance, contrast, and structural 
appearance similarities between true and restored imag-
es. Likewise, the value was calculated over dsup. Its ex-
pression, comparing images x and y, is given in Eq (16).

Figure 9: Restored noisy image (top left) and compar-
ison in selected zoomed-out region (middle and right) 
between degraded with large PSF (top) and restored 
(bottom) image. Left inset represents restoring PSF

Figure 10: Estimated restoring PSF (left) and compar-
ison in a zoomed-in frontal regions (middle) and the 

corresponding restored images (right), after degraded 
with small (top) and large (bottom) blurs

∆

(16)

where μx, μy, σ
2

x, σ
2

y, and σxy are, respectively, averaged 
intensities of images x and y, their variances and cova-
riance. ϵ is a constant stabilizing the division by small 
dominator. Finally, to determine if the proposed res-
toration would benefi t image fusion, NCC (Normalized 
Cross-Correlation) [4] between true and restored images 
was also evaluated.
Fig. 11 depicts EDGE, SSIM, and NCC of the noisy im-
age, underwent small (a) and large (b) kernels degrada-
tion, respectively, during the restoration process. Like-
wise, Fig. 12 depicts the same evaluations for the low 
noise image.

Convergence Analysis

On analyzing convergence behavior of the proposed 
method, Peak Signal to Noise Ratio (PSNR) of the re-
stored against true image was measured based on 
PSNR = 10 log10 (error2/ peak) of pixels within the sup

a)

b)

Figure 11a:  Quantitative fi delity evaluation for the noisy 
image given small PSF

Figure 11b:  Quantitative fi delity evaluation for the noisy 
image given large PSF
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a)

b)

Figure 12a:  Quantitative fi delity evaluation for the low 
noise image given small PSF

Figure 12b:  Quantitative fi delity evaluation for the low 
noise image given large PSF

a)

b)

Figure 13a:  PSNR (dB) of the noisy image given small 
and large PSF

Figure 13b:  Relative kernel updates (dB) of the noisy 
image given small and large PSF

b)

Figure 14b:  Relative kernel updates (dB) of the low 
noise image given small and large PSF

a)

Figure 14a:  PSNR (dB) of the low noise image given 
small and large PSF
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port region. The relative update of estimated (restoring) 
PSF was calculated by Update (dB) = 10 log10 (∑ |Δhk|/ 
∑ |Δh1|), where k was the iteration index. For the noisy 
image, the PSNR and relative kernel update are shown 
in Fig. 13 (a and b, respectively). The dotted and gray 
lines represent results for images degraded with small 
and large blur, respectively. The same experiment was 
repeated in a low noise case and corresponding results 
are shown in Fig. 14.

DISCUSSION

Visual assessments (Fig. 8–10) confi rmed that enhanced 
NAS-RIF could recovered degraded features in both low 
and high noise cases. Especially, gray and white matter 
separation and brain boundary became more apparent. 
Importantly, the estimated restoring PSF in highly blurred 
images resembled sharpening, i.e., a reciprocal fi lter of 
the degrading PSF. In less severely blur, however, the re-
sults differed between low and high noise images. In the 
former case, the estimated PSF remained a sharpening 
with lesser degree, whilst in the latter case, the kernel 
was also elevated by a quadratic function to compensate 
not only for blur but also for inherent noise.
To investigate the adaptability of the proposed NAS-RIF 
variation quantitatively, three accuracy and fi delity met-
rics related to biomedical imaging tasks were evaluat-
ed. In the noisy image (Fig. 11), the EDGE strength in-
creased as it proceeded, although at slightly higher rate 
in small PSF case (a) than in the large one (b).For a 
general-purpose vision system, SSIM, which character-
izes not only image luminance and contrast restoration 
but also its structural appearance, was evaluated. The 
value consistently was improved but at decreasing rate 
toward the end for the small PSF case (a). Fluctuation 
at 0.3 was found in the large PSF case (b), during ap-
proximately the fi rst 450 iterations, after which it con-
verged. Similar characteristics were established for the 
NCC in both cases. For the lower noise image (Fig. 12), 
the improvements on these fi delity metrics were more 
pronounced in both small (a) and large kernel (b) cas-
es. Convergences of EDGE and NCC in the latter case, 
nonetheless, started earlier (350 iterations) than did the 
former one (700 iterations).
On convergence inspection, if noisy image (Fig. 13) was 
degraded with low level blur, kernel update started to de-
cay since the fi rst few hundred iterations and PSNR did 
stabilized but at later stage. At higher level blur, small 
kernel update began early but fl uctuated within -23 to -30 
dB, while PSNR had not much been improved, in which 
case, the procedure was terminated when maximum 
number of iterations was reached. For a lower noise 
case (Fig. 14), similar visual results were established. 
Numerically, however, both PSNR and kernel updates 
had better convergence behavior, in which case, small 
incremental kernel updates relative to its magnitude cri-
terion was met upon termination.

CONCLUSION

Image enhancement is the fi rst and important step toward 
various machine learning algorithms for Computer Aided 
Diagnosis (CAD) and Interventional (CAI) [35]. NAS-RIF 
and its variants were proved a viable tool in recovering 
the true from degraded image. The technique was based 
on iterative blind image deconvolution scheme [13] and 
was fi rst proposed by Kundur and Hatzinakos [14]. Origi-
nal NAS-RIF was found effi cient and suitable for medical 
and astronomical images. Thus far, studies have shown 
that support region and multi-resolution analyses, and 
objective regularization could be implemented to further 
improve NAS-RIF stability and its convergence behavior.
This study adopted this paradigm and proposes 
multi-modal automatic segmentation to defi ne more ac-
curate support and introduces a structural anisotropic 
weight, corresponding to image fi delity but was more 
robust against intensity noise, to adaptively tune the 
non-negativity cost. The experimental results reported 
herein demonstrated that the enhanced NAS-RIF could 
restored medical images with low and high inherent noise 
that were degraded with PSF with varying kernel sizes.
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